NOC 技術ノート No. 114

スルフェンアミド系加硫促進剤について

(7)

種々のスルフェンアミド系加硫促進剤に関し前回(NO C技術ノート No. 100~102, 111~113) までスコーチ, 加硫物物性について御報告しました

今回はスルフェンアミド系促進剤ノクセラーCz,ノクセラーNS,ノクセラーMSAについて、通常広範囲に使用されているチアゾール系促進剤ノクセラーDMを比較促進剤としてとりあげ、カーボン変量配合における影響について調べるため実験を行なったので御紹介するとともにその結果を簡単ながらまとめてみました。

スコーチに関し、スルフェンアミド系促進剤ノクセラーCz、ノクセラーNS、ノクセラーMSAはチアゾール系促進剤ノクセラーDM よりも、スコーチに対して安全であるとともに、加硫の立り上り速度($\iota_{\Delta 80}$)が大きい、カーボンブラックではファーネスブラック HAF の方がサーマルブラック MT よりもスコーチが速く、配合量を増加するとその傾向は更に著しくなっているが、これはHAF が塩基性のためと考えられます。

加硫物物性に関し、スルフェンアミド系促進剤ノクセラーCz、ノクセラーNS、ノクセラーMSAはチアゾール系促進剤ノクセラーDMよりも低伸ビ、高引張応力を与

える。カーボンブラックでは、一般に HAF は補強剤として、MT は増量剤として用いられることが多いようですが、カーボンブラックを大量に配合すると伸ビと引張強サが低下するがその傾向は HAF に著しい結果がみられます。

以上のとおりスルフェンアミド系促進剤ノクセラー Cz, ノクセラー NS, ノクセラー MSA は加硫物引張特性に対してはほとんど同じ効果を備えておりますが,スコーチ性にはそれぞれ固有の特徴を有しているので,その特性を利用してゴム製品製造に最も適した促進剤を選択することができます.

1. 配合

R. S. S. # 1		100
亜 鉛	華	5
ステアリン	酸	3
イオ	ウ	2.5
充 て ん	剤*	40, 60, 80
促進剤試	料	1

* 充てん剤は HAF, MT カーボンブラック

2. 実験結果

2-1 ムーニースコーチ試験

実験条件: JIS K 6300-'63 に準拠, ML-1 @125℃

カーボンブラック の量		40 phr				60 phr		80 phr			
カーボ ンブラッ ク種類	促進剤	t_5	t 35	t_030	t ₅	t ₃₅	t _{△80}	t 5	t 85	t _{△30}	
HAF	DM	14'20"	18'52"	4'32"	11'43"	15'50"	4'07"	8'10"	11'18"	3'08"	
	CZ	16'13"	17'53"	1'40"	13'52"	15'23"	1'31"	8'23"	9′53″	1'30"	
	NS	21'20"	23′36″	2'16"	16'58"	19'17"	2'19"	10'29"	12'32"	2'03"	
	MSA	24′58″	27′53″	2'55"	19'55"	22'43"	2'48"	11'00"	13'20"	2'20"	
МТ	DM	24'18"	28'41"	4'23"	23'43"	28'22"	4'39"	18'33"	23'40"	5'07"	
	CZ	25'25"	27'13"	1'48"	24'53"	26′34″	1'41"	23′35″	25′18″	1'43"	
	NS	32′36″	34'38"	2'02"	33′32″	36'02"	2'30"	29'33"	33'11"	3'38"	
	MSA	38'43"	42'27"	3'44"	37'42"	42'08"	4'26"	32'28"	37′36″	5'08"	

 2-2 加 硫 試 験

 実験条件:プレス加硫 @ 140°C, 引張試験:JIS K 6301-'69 に準拠, 引張試験機:テンシロン, 試験片の形状:JIS ダンベル状 3 号形 (HAF-ブラック)

	(HAF-ブラック)						(MT-ブラック)						
試 料	カーボン	加硫時間	E_B	T_B	M (kg	g/cm²)	7.7	E_B	T_B	$T_B = M \text{ (kg/cm}^2)$			
	配合量	(分)	(%)	(kg/cm ²)	M_{100}	M_{300}	H_S	(%)	(kg/cm²)	M_{100}	M_{300}	H_S	
DM	40	10 20 30 40	530 520 480 450	251 300 299 293	16 20 23 25	80 113 128 129	52 58 60 62	710 650 610 630	225 251 245 245	9 11 13 12	32 47 55 56	34 43 42 43	
	60	10 20 30 40	430 350 310 340	271 290 275 256	32 45 49 51	159 206 216 207	68 72 73 75	650 580 540 500	199 228 222 210	10 14 16 16	44 73 77 84	38 47 50 49	
	80	10 20 30 40	270 220 210 200	235 236 232 237	55 74 75 83		75 82 82 82	580 500 450 430	183 208 197 193	13 19 21 23	62 104 111 118	45 55 57 55	
CZ	40	10 20 30 40	510 420 410 410	310 291 283 279	32 35 35 34	157 196 192 194	62 66 65 65	690 530 510 500	264 240 223 214	13 18 17 17	61 87 90 85	45 51 52 52	
	60	10 20 30 40	350 300 280 270	292 264 253 250	51 62 65 61	262	72 76 76 76	590 550 470 450	237 220 206 196	17 26 24 25	90 126 126 125	49 56 58 58	
	80	10 20 30 40	260 220 200 210	179 186 167 165	56 69 76 79		76 80 83 83	510 400 360 370	209 185 182 179	26 35 33 36	128 153 155 156	60 64 65 65	
NS	40	10 20 30 40	540 430 400 390	303 287 278 271	29 38 38 34	144 194 204 200	60 66 67 66	650 540 510 490	262 242 238 219	13 20 19 20	56 95 95 105	45 52 51 53	
	60	10 20 30 40	350 280 260 250	283 272 254 248	52 67 67 69	251	70 76 76 77	560 470 460 440	241 207 207 198	20 24 25 25	105 127 128 132	53 59 60 59	
	80	10 20 30 40	220 170 180 170	240 215 210 195	91 113 110 112		82 84 85 84	540 370 350 350	203 184 181 179	21 34 36 36	105 159 159 161	55 65 65 66	
MSA	40	10 20 30 40	540 460 410 400	301 298 279 265	23 34 34 35	134 182 190 180	58 63 65 64	680 550 530 500	259 244 231 218	11 19 18 18	50 88 87 89	38 51 50 51	
	60	10 20 30 40	380 300 270 260	285 268 259 241	49 66 66 62	230 267	71 75 77 76	600 490 460 450	236 210 204 197	15 21 23 23	190 119 126 124	50 58 58 57	
	80	10 20 30 40	270 200 200 190	257 220 213 208	77 99 102 97		78 82 84 84	530 420 390 380	180 193 184 183	15 37 35 33	81 154 158 155	49 60 63 62	

[訂正] NOC技術ノート No. 111 (日ゴム協誌43, 224) 配合試料: 誤 2.5×10⁻² モル, 正 2.5×10⁻⁸ モル

大内新興化学工業株式会社