スルフェンアミド系加硫促進剤について

(9)

前回¹⁾ まで,各種スルフェンアミド系加硫促進剤の単独使用および,スルフェンアミド系促進剤どうし(ノクセラー CZー ノクセラー MSA),またチアゾール系促進剤との併用(ノクセラー CZー DM)使用によるスコーチ,加硫特性について報告してきました.

そこで今回も、スルフェンアミド系促進剤ノクセラー NS とノクセラー MSA, そしてまた ノクセラー NS と ノクセラー DM を変量併用した場合の効果を比較 する ため実験を行なったので御紹介いたします.

ムーニースコーチ試験(表—1, 2)におけるスコーチ (t_s) はノクセラー NS とノクセラー MSA を併用した場合,ノクセラー NS 量が減少するに伴なって,安定性が増すが,ノクセラー NS 量が減少するに伴なって,安定性が減少する。この傾向は前回 S のノクセラー CZ 量が減少するに伴う傾向と同一である。加硫の立ち上り速度($t_{\triangle SO}$)はノクセラー NS とノクセラー MSA を併用した場合,ノクセラー NS 量が減少するに伴って遅くなり,ノクセラー DM を併用した場合,ノクセラー DM を併用した場合,ノクセラー DM を併用した場合,併用割合 $(NS:DM=100:0)\sim (NS:DM=25:75)$ では,ほとんど変化が見られない。これらのことは(図一1,2)の t_{S} , $t_{\triangle SO}$ の変化曲線によって一層明白である。

加硫温度におけるキュラストメータ ー 曲 線 (図一3,4) は両併用とも、架橋反応の開始までの 遅効性が スコーチ (t_s) と同一傾向を示し、最高トルクに達するまでの

速度が加硫の立ち上り速度 (tase) とほぼ同一傾向を示している

加硫物引張特性(表-2,3) はノクセラー NS とノクセラー MSA を併用した場合, 併用割合 (NS: MSA = 75:25) の時, 他の併用割合よりも引張強サ, 伸ビ,引 張応力が多少高い傾向を示し、ノクセラー NS とノクセラー DM を併用した場合も、併用割合 (NS: DM = 75:25) の時,他の併用割合よりも引張強サ,伸ビ,引張応力が多少高い傾向を示している.

したがって、ノクセラー NS—ノクセラー MSA また ノクセラー NS—ノクセラー DM において、それらの併 用割合を変えることにより、上記のような加硫物性が得 られ、スコーチおよび加硫速度を適度に調整することが できる.

引用文献

- 1) NOC 技術ノート No. 100~102, 111~115
- 2) NOC 技術ノート No. 115

1. 配 合

SBR (1712)	100
亜鉛華	5
ステアリン酸	1
HAF ブラック	40
イオウ	2
試 料	1.5

2. 実験結果

2-1. ムーニースコーチ試験

実験条件: JIS K 6300-'63 に準拠, ML-1, ® 125℃

表-1. ノクセラー NS とノクセラー MSA との併用.

弒	料	NO.	1	2	3	4	5
ノクセ	ラー	- NS	100	75	50	25	0
ノクセ	ラーコ	MSA	0	25	50	75	100
	t ₅		42'35"	44'55"	49'17"	55'20"	66'45"
	t ₃₅		48'05"	51'13"	56'06"	62'56''	73'45"
	t △30		5'30"	6'18"	6'49"	7′36″	7′00″

表-2. ノクセラーNS とノクセラーDM との併用.

試	料	NO.	6	7	8	9	10
ノクセ	ラー	· NS	100	75	50	25	0
ノクセ	ラー	· DM	0	25	50	75	100
	t ₅	4	42′35″	35'08"	31'22"	30'23"	29'54"
	t ₃₅	4	48'05"	40'40"	36'51"	35'39''	37'57"
	t_30		5′30″	5′32″	5'29"	5'16"	8'03"

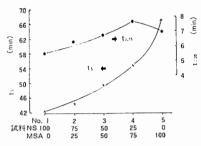


図-1. ノクセラ- NS とノクセラ- MSA との併 用による t₅, t₄₈₀ の変化.

42 (8 (cir. 40 38 6 36 2.30 34 32 £ 30 8 50 50 9 25 75 10 0 100 武料 No. 6 NS 100 75 DM 0

図-2. ノクセラ-NS とノクセラ-DM との併用 による t₅, t₄₃₀ の変化.

2-2. キュラストメーター試験

実験条件:ダイス #/(2 mm), オッシレーテング角度 ±3°, 測定温度 150℃.

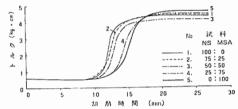


図-3. **ノクセラー NS** と **ノクセラー MSA** との併 用によるキュラストメーター曲線の変化.

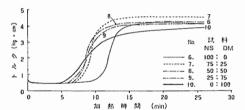


図-4. **ノクセラー NS** と**ノクセラー DM** との併用 によるキュラストメーター曲線の変化.

2-3. 加硫試験

実験条件:プレス加硫®150°C, 引張試験: JIS 6301-'62 に準拠、引張試験機:テンシロン, 試験片: JIS ダンベル状 3 号形、引張速度: 500 mm/min.

表-2. **ノクセラー NS** と**ノクセラー MSA** との併用 による引張特性試料.

表--3. **ノクセラ-- NS ノクセラ-- DM** ととの併用に よる引張特性.

試料 NO.	加硫時間	$T_{ m B} \ m (kg/cm^2)$	E B	Modulus	(kg/cm²)	$H_{\mathbb{S}}$	就 NO.	加硫時間	$T_{ m B} \ m (kg/cm^2)$	E _B	Modulus	(kg/cm²)	$H_{\mathbb{S}}$
(配合割合)	(分)	(kg/cm²)	(%)	100%	300%		(配合割合)	(分)	(Kg/CIII-)	(%)	100%	300%	
	15	189	500	18	89	55		15	189	500	18	89	55
NS MSA	20	175	410	23	113	57	NS DM	20	175	410	23	113	57
1.	25	171	390	22	123	57	6.	25	171	390	22	123	57
(100:0)	30	178	380	23	125	58	(100:0)	30	178	380	23	125	58
	40	160	350	21	120	59		40	160	350	21	120	59
	15	225	530	20	108	58		10	238	710	15	62	52
NS MSA	20	198	450	22	118	57	NS DM	15	216	510	21	102	57
2.	25	201	450	23	126	59	7.	20	203	480	22	111	57
(75:25)	30	192	430	22	125	60	(75:25)	25	206	450	23	121	59
	40	184	400	25	130	59		35	193	430	22	122	59
	15	192	510	19	94	54		10	209	680	14	65	51
NS MSA	20	156	350	24	115	58	NS DM	15	201	510	19	99	54
3.	25	167	390	22	121	58	8.	20	180	420	21	105	56
(50:50)	30	162	370	24	126	57	(50:50)	25	176	420	21	111	56
, ,	40	168	370	23	126	59		35	164	400	21	115	57
	20	166	390	23	115	59		10	216	720	15	59	53
NS MSA	25	170	390	22	119	58	NS DM	15	203	570	17	83	54
4.	30	166	370	24	125	65	9.	20	195	510	20	96	57
(25:75)	35	175	380	24	129	57	(25:75)	25	184	460	20	102	55
	45	164	360	24	125	61		35	182	450	20	105	58
***************************************	20	179	450	21	104	57		10	196	1020	9	28	46
NS MSA	25	148	340	23	118	57	NS DM	15	227	790	12	52	52
5.	30	179	400	22	125	58	10.	20	230	680	15	76	53
(0:100)	35	177	400	23	124	56	(0:100)	25	220	600	17	82	56
,	45	151	340	24	123	57		35	231	590	18	95	57

訂正 NOC 技術ノート No. 115 図-2 DN → DM 表-2, 3 T_B ⇒ E_B

大内新興化学工業株式会社