NOC 技術ノート No. 274

低温加硫について(4)

通常の加硫温度 $(140 \sim 160 ^{\circ}\text{C})$ では加硫できない場合 (例えば、軟化点の低い材料にゴムコーティングをし、加硫を行う場合など)、低温で加硫を行う必要があり、また省エネルギーによるコスト低減から、低温短時間加硫系が望まれている。

低温加硫については、過去に NOC 技術ノートでも紹介してきた¹⁾. また、NR及びIRの低温加硫系($100\sim110$ $^{\circ}$)として、2-メルカプトベングチアゾールとアミ ノ 基に脂肪族又はシクロヘキシルラジ カルを持つトリス(オルガノアミド)ホスフェートを併用 した加硫系なども紹介されている 20 .

今回から、低温短時間加 硫 系(NR 硫黄加硫, 100℃) として推奨できるチアゾール系, チウラム又はジチオカ ルバメート系及び加硫活性剤の三者併用加硫系について 紹介する.

実験 1 では, J クセラーM+J クセラーTT の組合せに更に加硫活性剤の J ックマスター EGS を併用した場合の加硫挙動 (+ ュラストメータ100 $^{\circ}$ 0, ムーニースコーチ70 $^{\circ}$ 0) を表 1 及び図 1 に示した. J ックマスター EGS を 2 \sim 3 phr 併用することによって, 著しく加硫が促進され,低温短時間加硫が可能となることがわかる.

実験 2 では、チアゾール系(ノクセラーM)、チウラム 又はジチオカルバメート系(ノクセラーTT・PPD・PZ・TTCU・TTFE・TTTE) 及び加硫活性剤(ノックマスターEGS・トリエタノールアミン) の三者を併用した場合の加硫挙動 (レオメータ100℃、キュラストメータ100℃、90℃) を表 2 及び図 2 に示した、実験結果から、試料No. 1 の $M(1 \text{ phr})+TT(0.5 \text{ phr})+EGS(2 \text{ phr})の三者併用が、加硫速度 <math>[t'_{\circ(00)}]$ が速く、かつトルク(架橋密度、 M_{HF})も大きく、また加硫誘導時間 $[t'_{\circ(10)}]$ も長く、熱履歴を受ける加工工程でも耐スコーチ性が良好であることが予想できる。

ムーニースコーチ試験, 練り生地の 貯蔵安定性(23±2℃貯蔵), 加硫物(100℃, 15分加硫)の引張試験については, 次回に紹介する.

引 用 文 献

- 1) NOC技術ノート: No. 166, No. 171, No. 172
- 2) ラバーダイジェスト: 28, No. 1(1976)29

実験 1. 加硫活性剤ノックマスターEGSの併用効果

(/ 2 / 2 / 2) (/ 2 / 2 / 2) (

1.1 配 合*1

NR (RSS #1)	100
ステアリン酸	3
酸化亜鉛	5
HAF ブラック	40
加 硫 系	表1中に示す

*1 加硫系配合はロールを使用し、配合ゴム温度は50℃ 以下で行った。

表 1

1.2 実験結果

加硫系

試料 No.

	1	2	3	4	5	6
	2. 5	2. 5				2. 5
• •	1	1	1		1	0

EGS		1	2	3	3	3
TT	0.5	0.5	0.5	0.5	0.3	0.3
M	1	1	1	1	1	2
硫 黄	2. 5	2. 5	2. 5	2. 5	2. 5	2. 5

ムーニース	くコーチ討	、験**,	ML_{-1} (70°C)			
V_{m}		36	35	35	33	32	
t ₅	-	31'	14. 5"	14.5'	18.5"	17′	
t⊿30	_	11'	5′	4.5′	4'	4'	

キュラストメータ試験*2 (JSR-Ⅱ型), 100℃

$M_{HF}[N \cdot m]$	31.4	35.3	38. 2	37.2	35.3	36.3
t'o(10)	22′	7.5′	3.5'	2.5'	3′	2'
t'c(90)	37′	14'	9'	9'	12'	13'

^{*2} 加硫系配合直後の配合ゴムを使用して行った.

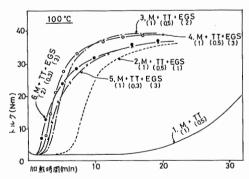
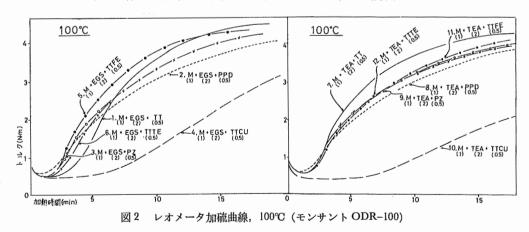


図 1 キュラストメータ加硫曲線, 100℃(JSR-II型)

実験 2. チアゾール系 (M), 加硫活性剤 (EGS, TEA) 及び各種ジチオカルバメート系加硫促進剤の 併用例


2.1 配合 実験 1.1 と同じ条件で行った. 加硫系は表 2 中に示す.

2.2 実験結果

表 2

加硫系	試料 No.	1	2	3	4	5	6	7	8	9	10	11	12
硫	黄	2. 5	2. 5	2. 5	2. 5	2. 5	2. 5	2.5	2. 5	2. 5	2.5	2. 5	2.5
ノクセラ	- M	1	1	i	1	1	1	1	1	1	1	1	1
ノックマス TEA (トリ	ター EGS エタノールアミン)	2	2	2	2	2	2	2	2	2	2	2	2
ノクセラ		0.5						0.5					
"	PPD		0.5						0.5				
"	PZ			0.5						0.5/			
"	TTCU				0.5						0. 5		
"	TTFE					0.5	0.5					0.5	0.5
"	TTTE						0.5						0.5
レオメータ (モンサン]	試験*³, > ODR-100)												
	$M_{HF}[N \cdot m]$	4.7	4.4	4.5	4.3	4.5	4.5	4.5	4.4	4.4	3.3	4.5	4.5
	100°C⟨ t'e(10)	4'	2.5'	2.5'	8'	2.5'	3′	2.5'	2.5'	2.5'	7.5'	2.5'	2.5'
	(t'c(90)	14'	17′	15'	26′	11.5'	15'	12'	18'	16'	28′	15'	16'
キュラスト (JSR-Ⅱ	メータ試験* ³ 型)												
	$[M_{HF}[N \cdot m]]$	38. 5	34.6	36. 5	34.6	37.5	36.5	37.0	36.5	36. 5	30.7	36.0	35.9
	100℃ (t'e(10)	3.5'	1.5'	1.5'	5.5'	1.5	2'	2′	1.5'		6.5'	1.5'	1.5
	\ t'0(90)	9'	11'	9.5	19.5'	8.5′	11'	9′	13'	10.5′	24′	11'	12'
	(M _{HF} [N·m]	36.0	33.7	32. 5	24.4	34. 3	33. 7	34. 7	32. 3	32.7	24.0	33.4	31.5
	90°C t'c(10)	7'	3′	4'	12'	3.5'	4'	3.5'	3'	3'	15'	3.5'	3'
	t'c(90)	20'	23′	22′	38'	19'	21'	18′	21'	21'	47′	22'	21'

^{***} レオメータ及びキュラストメータ測定は、加硫系配合直後の配合ゴムを使用した. ムーニースコーチ試験、練り生地の貯蔵安定性、引張試験については次回に紹介する.

大内新興化学工業株式会社