NOC 技術ノート No.426

スポンジゴム配合について(14)

スポンジゴムを製造する際、水分の影響によりその発 泡状態に大きなバラツキが生ずるといわれているり、今 回は、EPDM スポンジゴムにおける練り生地貯蔵中の水 分について、練り生地を通常の室内及び水中放置による 影響を調査したので紹介する。

配合を表 1 に示す。加硫系として PZ 系 (PZ/BZ/M/TRA) 及び非ニトロソアミン系加硫促進剤である TOT-N 系 (TOT-N/ZTC/M/CZ/M-60) について行った。発泡剤として OBSH (P,P'-オキシビスベンゼンスルホニルヒドラジド),ADCA (アゾジカルボンアミド),DPT (ジニトロソペンタメチレンテトラミン) を用いた。混練りは8インチロール $(50\sim60^\circ\text{C})$ を用い、混練りした練り生地を室内 (25°C) 及び水中 (25°C) にて $1\sim6$ 日間放置した。その後直ちに押出機を用いて $\phi10$ mmの形状に成形 (80°C) を行い, 200°C ギヤオーブン中で15分間加硫発泡した。

スポンジゴムの比重を表 2 に示し、レオメータ加硫曲線を図 1~4 に示し、比重と放置日数の関係を図 5 に示す。

PZ 系及び TOT-N 系では、OBSH(配合 No.2.5)は水中、室内放置共に同等の比重を示し、水分の影響を受け

実 験

表1 配合

X 1 BUB	
EPDM*1	100
ステアリン酸	1
酸化亜鉛	5
FEF ブラック	70
重質炭酸カルシウム	40
パラフィン糸オイル	45
吸湿剤(CaO)	5
硫黄	1.5
加硫促進剤	}表2
発泡剤) ~ -

*¹⁾中飽和度,プロピレン含量47, ムーニー粘度38(ML₁₊₄100℃) ない安定した発泡性能を有することがわかる。一方 ADCA(配合 No.3)及び DPT(配合 No.4)は水分の影響 を受けやすく比重が低下することがわかる。これは水の 存在により ADCA 及び DPT の加水分解によるものと 考えられる²⁾

引用文献

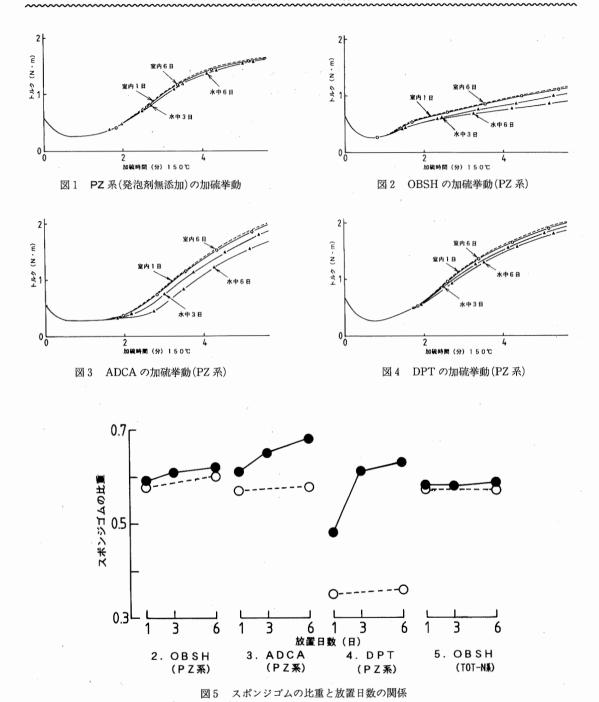
1) 特開平 7-149945

2) 間山憲和:日ゴム協誌, 67, 539(1994)

表2 スポンジゴムの比重1)

衣と スポンジュムの比重が						
∖ No.	1	2	3	4	5	
PZ	1	1	1	1		
BZ	1.5	1.5	1.5	1.5		
M	1.5	1.5	1.5	1.5		
TRA	0.7	0.7	0.7	0.7		
TOT-N					2	
ZTC					1	
CZ					1	
M		i,			1	
M-60					1	
OBSH ²⁾		5			5	
ADCA ³⁾			5			
DPT4)				5		
室内5)1日	1.13	0.58	0.57	0.35	0.57	
室内5)6日	1.13	0.60	0.58	0.36	0.57	
水中6)1日	1.14	0.59	0.61	0.48	0.58	
水中6)3日	1.13	0.61	0.65	0.61	0.58	
水中6)6日	1.12	0.62	0.68	0.63	0.59	

¹⁾SRIS 0101に準拠 200℃×15分加硫物


²⁾ネオセルボン N #1000 (永和化成)

³⁾ビニホール AC # LQ (永和化成)

⁴⁾セルラー D(永和化成)

⁵⁾室内放置25℃

⁶⁾水中放置25℃

ここに記載した内容は、細心の注意を払って行った試験に基づくものでありますが、結果をすべて確実に保証

するものではありません.

--○--室内放置 (25℃) —— 水中放置 (25℃)

大内新興化学工業株式会社