NOC 技術ノート No. 478

EPDM/NBR ブレンドに対する加硫促進剤の基礎性能(1)

NR, SBR, NBR などの高不飽和ジエン系ゴムは耐オゾン性, 耐候性ならびに耐熱性などが劣るため, EPDM をブレンドする事によって, その性能が改善される事が知られている.

先に¹⁾、NBR/EPDM ブレンドに対する**ノクセラー TOT-N** [テトラキス(2-エチルヘキシル)チウラムジスルフィド] の効果を紹介した。TOT-Nは、長鎖アルキル基を持つために NBR 及びEPDM に対する溶解性のバランスがよく、加硫ゴムの引張物性などが改善される。今回は、TOT-N と他のチウラム系(ノクセラー TT, TETおよび TBT-N)及びノクセラー CZ の比較を紹介する。

表1にムーニースコーチ,図1にブレンド比と加硫トルク値の関係及び図2にキュラストメータ加硫曲線を示す。

図1より, EPDM 75/NBR 25 ブレンド物の加硫トルクは, 特に低下することが認められる.

これは、加硫促進剤が NBR 層へ溶解しやすいため、NBR の加硫が優先していると考えられる。TOT-N 及び CZ では、この加硫トルクの低

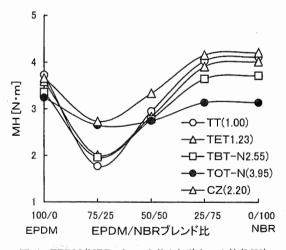


図 1 EPDM/NBR プレンド比と加硫トルク値(MH) の関係

下が小さく、他の加硫促進剤より EPDM 層での加硫が進行していると考えられる。

次回,加硫ゴムの物性などについて紹介する.

実験

1. 配合

EPDM*'/NBR*2, 酸化亜鉛5, ステアリン酸1, MAFブラック50, ナフテン系油10, 硫黄1.5, 加硫促進剤 別記

**¹ML₁₊₄ (100℃) 38,中不飽和度,プロピレン含量 47

表 1 ムーニースコーチ試験(125℃)

加硫促進剤	EPDM/NBR ブレンド比	Vm	t _s [min]	t⊿₃₅ [min]
TT(1.00)	100/0	36	12.1	7.4
	75/25	39	9.6	6.0
	50/50	36	10.6	4.6
	25/75	32	11.6	3.7
	0/100	33	12.8	4.3
TET(1.23)	100/0	34	18.4	11.8
	75/25	38	13.0	6.0
	50/50	35	14.1	4.9
	25/75	31	14.9	4.1
	0/100	32	16.5	4.5
TBT-N(2.55)	100/0	35	24.1	16.7
	75/25	38	16.9	9.7
	50/50	35	16.8	6.7
	25/75	32	17.8	5.3
	0/100	32	19.0	5.5
TOT-N(3.95)	100/0	35	39.4	28.1
	75/25	38	31.7	24.8
	50/50	35	29.7	17.3
	25/75	31	27.3	10.1
	0/100	30	24.7	7.5
CZ(2.20)	100/0	33	29.1	8.1
	75/25	37	19.4	2.6
	50/50	34	18.9	2.0
	25/75	31	19.2	1.9
	0/100	30	19.9	1.8

2ML₁₊₄ (100℃) 56, アクリルニトリル量 35 **2. 試料

- (1)TT(1.00), (2)TET(1.23),
- 3TBT-N(2.55), 4TOT-N(3.95),
- ⑤CZ(2.20) 配合量は TT(1.00) と等モル

3. 評価項目

(1)ムーニースコーチ試験; ML₋₁, 125℃ (2)キュラストメータ加硫試験; JSR III型, 160℃

引用文献

NOC技術ノート No.399;日ゴム協誌;67(3),233(1994)

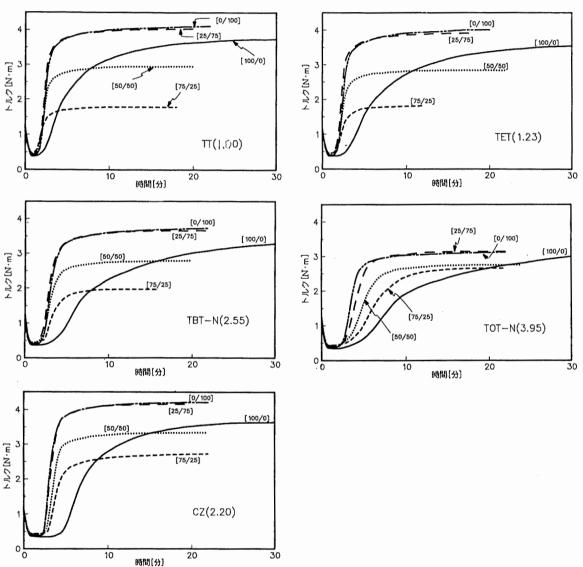


図 2 キュラストメータ加硫曲線(160℃) [] 内は EPDM/NBR ブレンド比

ここに記載した内容は,細心の注意を払って行った試験に基づくものでありますが,結果はすべ

て確実に保証するものではありません。

大内新興化学工業株式会社