NOC技術ノート No. 528

ノクセラーTBZTDについて(8) [NR配合]

過去^{1,2)} に、**ノクセラーTBZTD**のNR配合における加硫曲線について紹介した。今回は、CZと各種チウラム系加硫促進剤(TT, TET, TBT-N, TOT-N, TBZTD)を併用した場合のムーニースコーチ及び加硫曲線について紹介する。

表1にCZと各種チウラム系加硫促進剤を併用した場合のムーニースコーチ試験の結果を示す。チウラム系加硫促進剤は、TT、TET、TBT-N、TOT-Nの順にアミンのアルキル鎖が長く分子量が大きくムーニースコーチが遅くなる。TBZTDは、TT、TET、TBT-Nより高分子量であるが、TBT-Nに類似したムーニースコーチである。

図1にCZと各種チウラム系加硫促進剤を併用した場合の加硫曲線図を示す. ムーニースコーチと同様に分子量が大きくなる加硫が遅くなり,加硫トルクは低下する傾向が認められる.

図2にCZとTBZTDを併用した場合の加硫曲線図を示す.TBZTDの加硫トルクは、分子量が高いにもかかわらず比較的高い.TTの2倍量で同程度の加硫トルクを示す.

次回,加硫ゴム物性について紹介する.

実 験

1. 配合

NR 100, ステアリン酸 3, 酸化亜鉛 5, HAFブラック 45, ナフテン油 10, CZ 0.5, 硫黄 1.5, 加硫促進剤

2. 加硫促進剂

表1に示す.

3. 試験条件

ムーニースコーチ試験: 125℃, ML-1

加硫試験;145℃, MDR2000

引 用 文 献

- 1) NOC技術ノートNo.521; 目ゴム協誌; 77(5), 会告87(2004)
- 2) NOC技術ノートNo.522; 日ゴム協誌; 77(6), 会告107(2004)

ここに記載した内容は、細心の注意を払って行った試験に基づくものでありますが、結果をすべて確実に保証する ものではありません.

表1 NRにおけるCZと各種チウラム系加硫系促進剤のムーニースコーチ

		1	2	3	4	5	6	7	8
		CZ単独	TT (0. 2)	TET (0. 2)	TBT-N (0. 3)	TOT-N (0. 8)	TBZTD (0. 2)	TBZTD (0. 4)	TBZTD (0. 6)
	Vm	28	21	21	21	22	25	25	26
	t 5 [min]	32. 4	19. 5	23. 6	27. 5	29. 4	27. 2	23. 4	20. 3

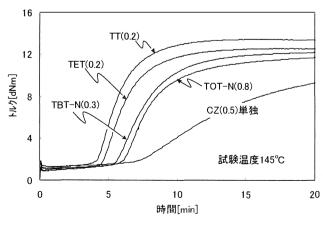


図1 CZと各種チウラム系加硫促進剤の加硫曲線図

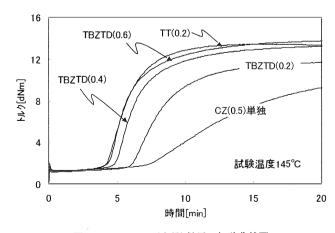


図 2 CZ/TBZTD(変量)併用の加硫曲線図

大内新興化学工業株式会社 http://www.jp-noc.co.jp