NOC技術ノート No. 579

EPDM 硫黄加硫の老化防止剤(3)

先に、EPDM硫黄加硫に対するアミン系老化防止剤の効果について紹介した。EPDM硫黄加硫にアミン系老化防止剤を添加しても、加硫ゴムの耐熱性を大きく向上させることはなかった 1,2 。今回は、フェノール系を中心にアミン系以外の老化防止剤について紹介する。

表1にムーニースコーチ,加硫試験,熱老化前の引張試験及び硬さ試験の結果を示した。また,図1に試料の一部の加硫曲線を示した。ハイドロキノン系のNS-7とDAHは,スコーチを速くさせる,そのためVmも大きくなっている。MBは,tc(90)が速いが,加硫トルクが低くなる。

次回, 熱老化後の引張試験, 硬さ試験および圧縮永久ひずみについて紹介する.

実 験

1. 配合

EPDM^{**1} 100,酸化亜鉛 5,ステアリン酸 1,HAF 50,パラフィン系オイル 50,炭酸カルシウム 50,老化防止剤 3,硫黄 2,EP-55^{**2} 3

**1ENB, ヨウ素価13%, **2EPDM用混合加硫促進剤

2. 試験項目

- (1) ムーニースコーチ試験125 ℃, ML
- (2) 加硫試験

160 ℃, MDR2000

(3) 引張試験, 硬さ試験

160 ℃, 30分プレス加硫, 硬さは, タイプ A 使用.

参考文献

- 1) NOC技術ノート No.576; 日本ゴム協会誌; 81, 会告281 (2008)
- 2) NOC技術ノートNo.577;日本ゴム協会誌;82,会告35(2009)

ここに記載した内容は、細心の注意を払って行った試験に基づくものでありますが、結果をすべて確実に保証する ものではありません.

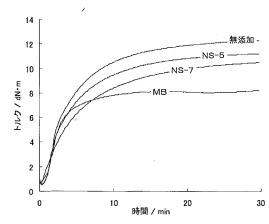


図1 老化防止剤添加EPDMの加硫曲線

表1 EPDM(硫黄加硫)への老化防止剤の影響

		ニース チ試験	加硫試験				引張試験,硬さ試験					
	Vm	t5 [min]	MH(30) [dN·m]	ML [dN·m]	tc(10) [min]	tc(90) [min]	TB [MPa]	EB [%]	M100 [MPa]	M200 [MPa]	M300 [MPa]	НА
無添加	17	9. 3	12. 3	0.6	1.2	12.8	11.1	380	2. 3	4. 9	8. 3	62
200	16	9. 1	11.5	0.5	1. 2	12.9	10. 9	390	2. 2	4.8	7.8	61
SP	15	9.3	11.6	0.5	1. 3	12. 9	11. 2	400	2. 2	4. 7	7. 9	61
N S-5	15	8.4	11.2	0.5	1. 1	13. 2	10. 7	400	2. 2	4. 7	7. 7	62
N S-6	15	7. 9	11.2	0.5	1.1	13.0	10.8	390	2. 2	4.8	7. 9	60
N S-3 0	15	9.2	11.0	0.5	1.2	12. 3	11.1	400	2. 3	4. 7	7.8	64
300	16	8.4	10.9	0.5	1.0	11.6	10.8	410	2. 1	4.4	7. 3	63
NS-7	22	3.1	10.5	0.6	0.8	15. 7	10.1	410	1.9	4. 1	6, 9	61
DAH	24	3. 2	10.5	0.6	0.8	15.8	10. 7	410	2. 1	4.4	7. 2	61
МВ	18	8.1	8. 2	0.7	1.0	7. 5	9, 9	550	1. 7	3. 0	4.6	60
MBZ	17	7.6	11. 7	0.7	1. 1	17. 1	11.0	460	2. 0	3. 9	6. 4	63
NBC	15	9.7	11.6	0.6	1.3	11.6	10. 2	390	2. 0	4. 3	7. 2	63
400	14	9.0	11.4	0.5	1. 2	13. 1	11.0	390	2. 1	4.5	7. 9	60

大内新興化学工業株式会社 http://www.jp-noc.co.jp