NOC技術ノート No. 653

ブチルゴムの架橋について(12)[樹脂架橋⑥]

前回¹⁾, ブチルゴムの樹脂架橋, キノイド架橋, 硫黄加硫, マレイミド架橋の加硫について紹介した. 今回は, 樹脂架橋, キノイド架橋, 硫黄加硫の加硫ゴム物性と圧縮永久ひずみについて紹介する.

図1に圧縮永久ひずみの結果,表1に加硫ゴム物性を示す.圧縮永久ひずみにおいて,樹脂架橋は,キノイド架橋,硫黄加硫と比較してかなり優れる.硫黄加硫はキノイド架橋より劣る.加硫ゴム物性において,樹脂架橋はTS,Ebともに高い.キノイド架橋はEbが高く,TSが低い.硫黄加硫はTSとモジュラスが高く,Ebが低い.硬さは,硫黄加硫とキノイド架橋がほぼ同等であり,樹脂架橋がわずかに低い.

次回は, 硫黄加硫, キノイド架橋, 樹脂架橋の熱老化後の加硫ゴム物性について紹介する.

実験

1. 配合

IIR (26 8) 100, N330 50, 酸化亜鉛 5, ステアリン酸 1, 加硫系 表1に示す.

2. 試験項目

- (1) 引張試験
- (2) 硬さ試験
- (3) 圧縮永久ひずみ;大形, 25 %圧縮, 100℃

参考文献

1) NOC技術ノートNo.652: 日本ゴム協会誌, 88, 会告143 (2015)

ここに記載した内容は、細心の注意を払って行った試験 に基づくものでありますが、結果をすべて確実に保証する ものではありません.

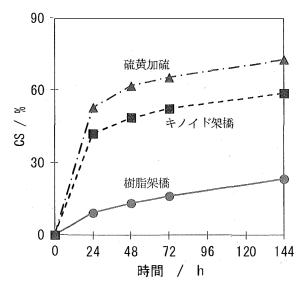


図1 圧縮永久ひずみ (加硫条件 樹脂架橋, 硫黄加硫; 160℃×50分, キノイド架橋; 160℃×25分)

表1 加硫ゴムの物性

	· -	樹脂架橋 250- Ⅲ [※] (12.0)	キノイド架橋 GM(3.0)/DM(4.0)	硫黄加硫 硫黄 (2.0) /TT (1.0) / M (0.5)
加硫条件		160℃×40分	160℃×15分	160℃×40分
初期物性	TS [MPa]	16.7	14.6	
	Еь [%]	500	480	410
	M100 [MPa]	2.9	2.7	3.4
	M200 [MPa]	7.5	7.2	8.3
	M300 [MPa]	11.8	11.1	12.8
	H_{A}	59	63	. 64

※タッキロール 250- Ⅲ(田岡化学工業株式会社)