NOC技術ノート No.660

BRにおける各種加硫促進剤の加硫性能について

ブタジエンゴム (BR) は,反発弾性,耐摩耗性に優れ, タイヤ,履物,ゴム引布などの工業用品に使用されている. 今回は,BRに各種加硫促進剤を単独で使用した場合の, 加硫性能について紹介する.

表1にムーニースコーチ試験の結果,図1,2に加硫曲線を示す.M-60-OTは、加硫速度が速い.CZ、MDB、MSAはスコーチタイムが長く、比較的加硫速度が速い.EURは加硫トルクが高くなるが、スコーチタイムが短い。同じチオウレア系のCの加硫促進効果は、ほとんどない。BRにおけるMの加硫は、他のジエン系ゴムと異なり加硫促進の効果が小さい。

次回にチウラム系, ジチオカルバミン酸塩系, キサント ゲン酸塩系の加硫性能について紹介する.

実験

1. 配合

BR[※] 100, ステアリン酸 1, 酸化亜鉛 5, N330 50, ナフテン系オイル 10, 硫黄 1.5, 加硫促進剤 1.0

**BR01 (JSR株式会社)

2. 試験項目

- (1) 加硫試験レオメーターMDR2000, 150℃, 30分
- (2) ムーニースコーチ; ML 125℃

16 -					
12 · Nb / 67/1		EUR	8 H		
0	Vanisaria de la constantina della constantina de		C		
	0 10		20	30	
	時間 / min				

図1 アルデヒドアンモニア系, アルデヒドアミン系, チオウレア系, グアニジン系の加硫曲線

ここに記載した内容は、細心の注意を払って行った試験 に基づくものでありますが、結果をすべて確実に保証する ものではありません.

表1 ムーニースコーチ試験

		Vm	t5 (min)
アルデヒドアンモニア系	Н	未実施	
アルデヒドアミン系	8	61	8.5
エ ュル1.マゼ	С	未実施	
チオウレア系	EUR	63	2.9
グアニジン系	D	54	19.7
	М	50	32.1
チアゾール系	DM	51	26.5
テノノールボ	M-60-OT	58	6.9
	MDB	50	47.6
	CZ	52	33.9
スルフェンアミド系	MSA	50	56.3

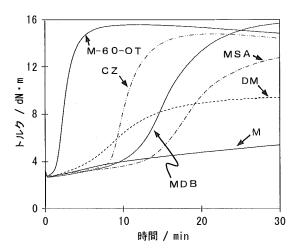


図2 チアゾール系,スルフェンアミド系の加硫曲線