NOC技術ノート No.699

アクリルゴムの加硫について(9)

前回¹⁾,エポキシ系の架橋点を持つアクリルゴムにPZ 単独と、PZに各種ジチオカルバミン酸塩系加硫促進剤を 併用した加硫性能について紹介した。今回は、加硫ゴムの 物性と圧縮永久ひずみについて紹介する.

表1に加硫ゴムの物性を示す、PZは配合量を増量する とモジュラスが高くなり、最大伸びが低くなる、PZとジ チオカルバミン酸塩系加硫促進剤の併用はPZ(1.0)と同 等の物性を有し、初期の加硫ゴムの物性に対する効果や影 響はほとんどない.

図1に圧縮永久ひずみを示す。 圧縮永久ひずみは、PZ (1.0) が最も臭好で、PZの配合量を増量すると悪くなる. PZとジチオカルバミン酸塩系加硫促進剤の併用は、圧縮 永久ひずみが悪くなる。 圧縮永久ひずみは TTFE > TTCU > ZTCとなり、ZTCの併用は影響が小さく、TTFEの併 用はもっとも悪い、次回は、熱老化後の加硫ゴムの物性に ついて紹介する.

実験

1. 配合

アクリルゴム^{※1} 100, ステアリン酸 1, FEF 60 加硫

**¹AR-42W (■本ゼオン株式会社)

2. 試験項目

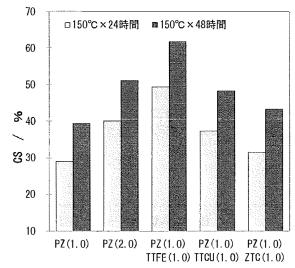
- (1) 引張試験
- (2) 硬さ試験

加硫条件(引張試験, 硬さ試験)

一次加硫;170℃×15分 プレス加硫

二次加硫:150℃×4時間 オープン加硫

(3) 圧縮永久ひずみ試験;150℃,大型,25%圧縮 加硫条件


一次加硫:170℃×30分 プレス加硫

二次加硫;150℃×8時間 オープン加硫

参考文献

1) № C技術ノート № 698 日本ゴム協会誌 2019, 92, 会告73

ここに記載した内容は、細心の注意を払って行った試験 に基づくものでありますが、結果をすべて確実に保証する ものではありません.

■1 圧縮永久ひずみ

表1 加硫ゴムの物性

		PZ (1,0)	PZ (2.0)	PZ (1.0) TTFE (1.0)	PZ (1.0) TTCU (1.0)	PZ (1.0) ZTC (1.0)
	Tb [MPa]	11.5	11.4	11.3	10.8	11.4
	Eb [%]	240	180	240	240	230
初期物性	S ₁₀₀ [MPa]	6.2	7.9	5.7	6.0	6.4
	S_{200} [MPa]	10,9	-	10.6	10.4	10.9
	H_{A}	60	64	60	63	60