NOC 技術ノート No. 81

ノクセラー MDB の無イオウ加硫について

(1)

通常の加硫温度で活性イオウを遊離して加硫を行なう 有機多硫化物としては、ノクセラーTT(Tetramethylthiuramdisulfide), ノクセラー TET (Tetraethylthiuramdisulfide) ノクセラー TRA (Dipentamethylenethiuramtetrasulfide) あるいはバルノックR (Molphotinedisulfide) などがあります。これらは無イオウ加硫剤と呼ばれ特に 前三者は他の加硫促進剤を併用することなしで加硫でき るものであります。 ノクセラー TT などによる無イオウ 加硫物は耐熱性、圧縮永久ヒズミ性に通常のイオウ加硫 物よりもすぐれておりゴム工業において, 電線絶縁ゴム スチームホース、その他工業用品として早くから採用さ れております.

このたび市販致しましたノクセラー MDB はジサルフ ァイドを有するスルフェンアミド系の新しい無イオウ加 硫剤であると共に加硫促准剤でもあります.

ノクセラー MDB による無イオウ加硫物はノクセラー TT の無イオウ加硫物と同じようにすぐれた耐熱性を有 し引張強さはノクセラー TT よりも大きく, 通常のイオ ウ加硫物に匹敵しております。またノクセラーTT なご チウラム類の欠点であるスコーチおよびブルームの危険 性がありません. 以下ノクセラー MDB の無イオウ加硫 についての一連の実験結果を御紹介致します. 今回はム ーニースコーチ試験、キュラストメーター試験、加硫試 験について報告致します.

1. ノクセラー MDB の化学名および性状 化学名: 2-(4-Morpholinodithio)-benzothiazole

$$N C - S - S - N O M.W 284.42$$

性状

外観 淡黄色粉末 融点 123℃以上

• 溶解性 ベンゼン、トルエンに可溶

水に不溶

貯蔵安定性 極めて良好

基礎配合		
表1 配	合 著	表
RSS # 1	100	_
SBR(1712)		100
ステアリン酸	3	1
亜 鉛 華	5	5
HAF ブラック	40	40
試料		
1. ノクセラー MD F	$3-2_{phr}$	(M-2)
2. "	$-3_{\tt phr}$	(M-3)
3. "	-4_{phr}	(M-4)
4. "	$-5_{ m phr}$	(M-5)
5. ノクセラー TT	$-2_{\tt phr}$	(T-2)
6. "	-3_{phr}	(T-3) ·
7. "	$-4_{\mathrm{ph}\mathrm{r}}$	(T-4)
8. "	$-5_{\mathrm{ph}\mathrm{r}}$	(T-5)
9. {ノクセラ - DM ノクセラ - DM	-1 _{phr} -1,5 _{ph}	イオウ-2.5 _{phr} (NR) r イオウ-2 _{phr} (SBR) (DM-S)

3. 実験結果

3-1 ムーニースコーチ試験

実験条件: JIS K 6301-1963に準拠 ML-1

{@140℃(NR) (@150℃(SBR)

表2 ムーニースコーチ試験結果

-							
	t ₅		t ₃	ś	t_80		
	NR	SBR	NR	SBR	NR	SBR	
1. M-2	18'50"	15'21"	23'03"	20'48"	4'13"	5'27"	
2. M-3	17'42"	13'53"	21'38"	18'56"	3'56'	5'03"	
3, M-4	17'40"	13'18"	21'33"	18'24"	3'53"	5'06"	
4. M−5	17'20"	12'38"	21'15"	17'10"	3'55"	4'32"	
5. T-2	5'50"	3'57"	7'55"	5'07"	2'00"	1'10"	
6, T-3	5'53"	3'38"	7'30"	4'41"	1'37"	1'03"	
7. T-4	5'53"	3'54"	7'20"	4'40"	1'17"	0'46"	
8. T-5	5'28"	3'19"	6'43"	4'11"	1'15"	0'52"	
9. DM-S	6'40"	8'35"	7'54"	10'39"	1'14"	2'04"	

紹

3-2 JSR型キュラストメーター試験

±5°

表3 JSR型キュラストメーターによる加硫時間

実験条件:ダイス #1 (2mm), オ

シレーティング角度

1.M-2 2.M-3 3.M-4 4.M-5 5.T-2 6.T-3 7.T-4 8.T-5 9.DM-S NR 30' 32′ 32′ 38' 16' 14' 13' 9'16' 28⁷ 25′ 30' 30' 8' 16'

試験温度 140℃(NR) SBR 150°C (SBR)

(注) キュラストメーターにより得られる曲線の最大幅に至る時間

3-3 加硫試験

実験条件:プレス加硫温度 140°C(NR) 150°C(SBR)

引張試験: JIS K 6301-1962に準拠, 引張試験機: テンシロン, 引張速サ:500 mm/min

試験片形状: JIS 3 号ダンベル, 測定時室温:23±1℃

表4 引 張 特 性 值

(NR)

(SBR)

	(2,122)						(5521)							
試料名	加硫 時間 (分)	E, [%]	${ m T}_B \ [m kg/cm^2]$	$ m M_{100} \ [kg/cm^2]$	$ m M_{300} \ [kg/cm^2]$	$ m M_{500} \ [kg/cm^2]$	H_s	E, [%]	${ m T}_B \ { m [kg/cm^2]}$	$ m M_{100} \ [kg/cm^2]$	$rac{M_{ m 800}}{ m [kg/cm^2]}$	$ m M_{500} m [kg/cm^2]$	$rac{M_{700}}{ m [kg/cm^2]}$	H_s
1. M-2	20 30 40 50 60	520 580 550 590 570	106 135 130 134 146	6 7 7 7 7	32 40 42 42 45	85 107 110 112 114	44 44 43		199 210 203	7 7 8 7 7	15 23 24 22 24	37 59 60 58 59	63 98 101 99 98	48 52 52 52 52 51
2. M-3	20 30 40 50 60	620 630 620 600 600	191 231 241 222 243	9 11 11 11 11	51 64 67 68 71	134 159 169 171 178	45 50 50 51	1100 860 850 870 860	188 235 230 237	7 10 9 10 10	22 43 44 43 44	55 100 103 96 101	93 166 169 163 167	51 52 53 53 53
3. M-4	20 30 40 50 60	660 610 600 580 570	236 288 288 285	10 14 16 15 14	60 86 92 93 93	152 213 220 222 232	48 53 57 57 57	710 710 710 680	225 234 240 223	9 12 12 11 11	30 68 69 67 66	75 141 145 141 139	117 224 226 —	51 54 56 57 56
4. M-5	20 30 40 50 60	640 570 540 510 500	264 301 289 281	13 17 20 18 19	78 106 112 114 114	188 255 267 271 271	54 59 60 60 59	900 630 560 570	232 227 204 209	9 14 14 15 15	40 83 88 87 86	96 171 173 174 175	156	53 57 57 58 58
9. T-2	20 30 40 50 60	600 580 570 570 580		8 8 9 8 9	47 48 49 49 49	120 123 133 126 121	44 47 48 47 47	920 950 900 890	233 228 230 228	9 9 9 9	37 35 35 36 36	85 83 85 87 86	137 137 139 144 142	51 52 52 52 52 52
6. T-3	20 30 40 50 60	600 590 590 580 570	233 230 230 220	12 12 11 12 13	68 73 64 70 72	173 180 171 175 181	51 52 53 52 52 52	700 710 690 700	230 226 212 221	12 12 11 11 11	58 60 59 60 61	123 125 124 125 127	218 218 — — 217	55 55 55 54 54
7. T-4	20 30 40 50 60	570 540 560 550 520	248 245 248 244 240	15 15 16 16 15	82 88 87 92 83	207 216 218 222 216	57 57 58 58 58	570 500 540 570	188 190 187 198	15 15 15 15 15 14	77 79 83 80 81	155 160 165 168 164		57 58 58 58 58
8, T -5	20 30 40 50 60	510 500 490 490 490	243 245 241 235	18 18 19 19	98 102 106 109 103	234 240 — —	59 60 61 60 60	470 470 480 480	185 171 182 184	7 7 7 7 7 7	92 95 98 97 96			60 60 60 60 60
9, DM-S	50	500 480 480 460 440	270 280 280 270 260	24 27 28 27 27	120 - 135 - 140 - 140 - 138	180	62 63 64 64 64	590 600	237 212 228	13 14 15 16 15	63 79 85 91 84	135 166 174 176 180	223 — — — —	52 55 57 57 57 57

大内新興化学工業株式会社