NOC技術ノート No.722

バルノック PM について(21) [EPDM 用架橋助剤(7)]

前回に引き続き¹²⁾, ゴム用過酸化物架橋剤の標準添加量³⁾ と標準添加量の半量にPMを併用した加硫性能について紹介する. 今回は, 過酸化物架橋剤に2,5-ジメチル-2,5-ジ (*tert*-ブチルペルオキシ) ヘキサンの純度40%品 (パーヘキサ25B-40 [分子量=290, 半減期1分の温度=180℃, 有効官能基数=1];日油株式会社)を用いた.

図1,2に加硫曲線,表1に加硫特性を示す.過酸化物架橋剤が標準添加量の場合,25B-40(5.8phr)は,パークミルD-40(5.4phr)およびパーブチルP-40(3.4phr)より加硫のトルクが高くなる^{1.2)}.25B-40にPMを併用すると,トルクは高くなり加硫の促進も認められるが,前回までに使用した過酸化物架橋剤D-40およびP-40よりトルク増大の効果は小さい.25B-40の半量(2.9phr)にPM 4.0phr併用すると,25B-40の標準量と同等のトルクが得られる.

実験

1. 配合

EPDM* 100, 酸化重鉛 5, ステアリン酸 1, SRF 70, パラフィン系オイル 10, パーヘキサ25B-40 変量, PM 変量 **中ヨウ素価

2. 試験項目

(1) 加硫特性;170℃×60分および180℃×30分

参考文献

- 1) NOC技術ノートNo.720 日本ゴム協会誌 2020, 93, 会告415.
- 2) NOC技術ノートNo.721 日本ゴム協会誌 2021, 94, 会告55.
- 3) 松倉邦雄 日本ゴム協会誌 1971, 44, 393.

ここに記載した内容は、細心の注意を払って行った試験 に基づくものでありますが、結果をすべて確実に保証する ものではありません。

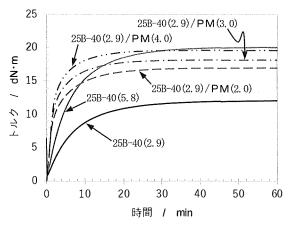


図1 加硫曲線 (170°C×60分測定)

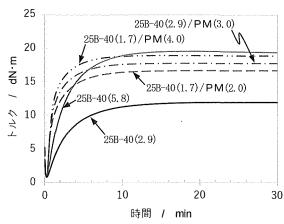


図2 加硫曲線 (180℃×30分測定)

表1 加硫特性

		170℃×60分測定				180℃×30分測定			
25B-40 [phr]	P M [phr]	ML [dN·m]	MH [dN·m]	tc (10) [min]	tc (90) [min]	ML [dN·m]	MH [dN·m]	tc(10) [min]	tc (90) [min]
5.8	0	0.8	20.2	1.0	18.1	0.8	19.6	0.6	6.8
2.9	0	0.8	12.2	1.3	21.3	0.8	12.0	0.7	8.0
2.9	2.0	0.9	17.1	0.6	12.0	0.9	16.7	0.4	4.7
2.9	3.0	0.9	18.3	0.6	10.0	0.9	17.7	0.4	4.2
2.9	4.0	0.9	19.7	0.6	8.9	0.9	18.9	0.4	3.8